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Abstract
The self-diffusion coefficient of a dilute fluid composed of infinitely thin hard
needles was studied by the molecular dynamics calculation together with
the trajectory calculation over a wide range of the moment of inertia of the
needle I. The self-diffusion coefficient at small moment of inertia agrees fairly
well with the independent scattering approximation (ISA) that is equivalent
to the first approximation of the Chapman–Enskog expansion. The deviation
of the ISA, however, increases with the increase in the moment of inertia, and
the deviation is almost saturated around I = 1 by 12% at a reduced density of
ρ = 0.01. The increase of the deviation with the moment of inertia is ascribed
to the rotational anisotropy in the translational motion; propeller-like motion in
which the rotational axis is parallel to the translational velocity receives larger
disturbance than Frisbee-like motion. The ISA works well at small moment of
inertia, because the correlation of the rotational anisotropy is lost rapidly.

PACS numbers: 05.20.Dd, 51.10.+y

1. Introduction

Transport properties of gases have been studied from the beginning of statistical physics
[1, 2]. However, it is still a difficult task to evaluate the transport coefficients
from the molecular characteristics especially due to the correlation among scattering processes.
The correlation in a monatomic gas comes from the difference in the relaxation time of the
molecular speed; faster molecules will have shorter relaxation time. Molecular fluids will
have additional complicated correlations due to the internal degrees of freedom of the
molecules. For example, we should consider the correlation between the collisions even
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in a single scattering process; non-spherical particles will have two or more collisions in a
single scattering, which is termed chattering collisions [3].

Relaxation of the molecular velocities accompanied by complicated correlations can be
evaluated by the Boltzmann equation. Systematic expansion of the Boltzmann equation had
been proposed to solve the correlations in scattering processes, such as the Chapman–Enskog
expansion [2, 3]. The first approximation of the Chapman–Enskog expansion corresponds to
the neglect of the correlation among the scattering processes that we will call the independent
scattering approximation (ISA) or the independent collision approximation (ICA) in this
paper. It is known that the ISA is a good approximation for the transport coefficients of
monatomic gases; the ISA (or the ICA) gives rigorous results for the Maxwellian gas [1]
and the deviation in the self-diffusion coefficient is only about 2% even for the hard-sphere
gas [2].

The ISA, however, will not be so successful in molecular gases as in monatomic gases.
An apparent difficulty is the correlation by the chattering collisions as referred to above; the
ICA is no longer identical to the ISA in molecular gases. We showed that the chattering
collisions bring about qualitatively different characteristics of the self-diffusion coefficient of
the simplest model fluid composed of infinitely thin hard needles [4]. We will demonstrate in
this paper the effect of another kind of correlation in the hard-needle gas due to the rotational
anisotropy in the translational motion.

We carried out the molecular dynamics calculation with a number of hard needles and the
trajectory calculation on the scattering of a pair of hard needles. The hard-needle fluid has a
self-diffusion coefficient larger by more than 10% than that evaluated by the ISA at a large
moment of inertia, though the chattering collisions rarely take place. The deviation from the
ISA comes mainly from the effect of rotational anisotropy with respect to the translational
motion; propeller-like motion, in which the rotational axis is parallel to the translational
velocity, receives larger disturbance from the surrounding hard needles than Frisbee-like
motion, in which the rotational axis is perpendicular to the translational velocity.

2. Model

Suppose a fluid is composed of infinitely thin hard needles. Equilibrium properties of the
hard-needle fluid are identical to those of the ideal gas at any density, because the excluded
volume is zero. The needle is assumed to be smooth, i.e. an impulse at a collision instant
between two needles is perpendicular to both of the needles. For the sake of simplicity, we
shall use the reduced units in which the length and the mass of the needle are unity. The
temperature multiplied by the Boltzmann constant, kBT , is also set equal to unity to avoid the
evident temperature dependence; e.g. the collision frequency is proportional to (kBT )1/2 at
constant density.

We consider a symmetrical needle in which the centre of mass coincides with the centre
of the needle; the moment of inertia I around the centre of mass is 1/12 for a homogeneous
needle. If the distribution of mass is limited within the needle length, the moment of inertia
cannot exceed 1/4. We, however, will consider a moment of inertia greater than 1/4 to
demonstrate the effect of a large moment of inertia, while the mass distribution spreads out of
the needle length [4].

When a needle B collides with a needle A at a relative translational velocity �vr, the relative
velocity between the contact points on A and B, �vcol, is given as

�vcol = �vr + β( �ωB × �uB) − α( �ωA × �uA) (1)
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where �ω and �u represent the angular velocity and the unit vector along the needle, and α and β

(|α| < 0.5, |β| < 0.5) represent the collision points along �u of needles A and B, respectively.
The impulse at the collision instant on needle A, � �P , is given as

� �P = − �v⊥
col

1 + (α2 + β2)/(2I )
(2)

where the superscript ⊥ denotes the component along the vector �uA × �uB that is perpendicular
to the plane made by �uA and �uB. The change in the angular velocity of needle A, � �ωA, is
expressed as

� �ωA = α

I
(�uA × � �P). (3)

We will define the collision as an event in which an impulse happens between the needles,
and the scattering as a whole process in which the separate needles encounter and go away.
A scattering is not necessarily composed of one collision. When a scattering contains two or
more collisions, the collisions are termed chattering collisions. The mean collision interval
τc that is the inverse of the mean collision frequency is exactly evaluated by assuming the
validity of the ergodicity as [5]

1/τc = 8
3π1/2ρIF3/2(8I ) (4)

where the function Fn(x) is defined as

Fn(x) =
∫ π/4

0

[(
1 +

1

x cos2 φ

)n

− 1

]
dφ. (5)

The function Fn(x) will be proportional to x−n at small x and converges on n/x at large x [4].

3. Independent scattering approximation (ISA) on the self-diffusion coefficient

The self-diffusion coefficient D is given by the velocity autocorrelation function as

D = 1

3

∫ ∞

0
〈�v(0) · �v(t)〉 dt (6)

where 〈X〉 represents the ensemble average of X, and �v(t) is the translational velocity at the
time t. When the velocity of the molecule is disturbed by impulsive random forces, the velocity
autocorrelation function Cv(t) will obey the exponential law as [6]

Cv(t) = 〈�v(0) · �v(t)〉 (7)

= 3 exp(−t/τv). (8)

The relaxation time τv in equation (8), which is equal to the self-diffusion coefficient, is given
by the initial slope of the velocity autocorrelation function as

1/D = − 1
3ρ〈〈�v · � �P 〉〉 (9)

where ρ and � �P denote the number density and the impulse at the scattering, respectively,
and ρ〈〈X〉〉 represents the mean value of X for a single molecule scattered in the unit time; e.g.
the scattering frequency of a single molecule is given by ρ〈〈1〉〉. Since the incident molecules
have the same statistical weight as the scattered molecules, equation (9) is expressed as [4]

1/D = 2
3ρ〈〈(� �P )

2〉〉. (10)

When a single scattering process is composed of many collisions, chattering collisions,
the mean value ρ〈〈X〉〉 can be taken for each collision or for the whole scattering; we will call
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Figure 1. Mean collision interval τc in the molecular dynamics calculations at several densities
ρ = 0.01 (◦), 0.1 (�) and 1 (♦). The solid line represents the analytical result in equation (4).

the former the independent collision approximation and the latter the independent scattering
approximation in this paper. The square of the total impulse during a single scattering is
composed of autocorrelation and correlation terms as

〈〈(� �P)
2〉〉 =

∑
i

〈〈(� �P i)
2〉〉 + 2

∑
i

∑
n>0

〈〈� �P i · � �P i+n〉〉 (11)

where � �P i represents the ith impulse in a scattering. The correlation terms on the right-hand-
side of equation (11) are neglected in the ICA [4]. The self-diffusion coefficient by the ICA
is given as [5]

1/D = 16
3

√
πρIF1/2(8I ). (12)

The ICA is identical to the ISA for monatomic gases in which no chattering collisions occur.
However, a significant difference was found for the hard-needle gas [4]; the ISA shows an
asymptotic behaviour at I → 0 as D ∝ I−0.83, while the ICA gives D ∝ I−0.5. The correlation
in a single scattering, which is evaluated in the ISA, reduces the total impulse in the scattering
at small moment of inertia. The effect of the correlation between the scatterings neglected
both in the ICA and the ISA will be shown by the molecular dynamics calculation in this
paper.

4. Computational method

4.1. Molecular dynamics calculation

We carried out molecular dynamics calculation with a simple collision-to-collision method
[7] over the moment of inertia 1 × 10−3 � I � 10 at low densities up to ρ = 1 under
the microcanonical condition. All the needles move freely until a collision of a pair of
needles happens, and then they move again after changing the velocities of the colliding pair.
Mean collision intervals agreed fairly well with the analytical result equation (4) as shown in
figure 1. The self-diffusion coefficient was evaluated by numerical integration of the velocity
autocorrelation function as in equation (6). The velocity autocorrelation function at each run
was evaluated with a time interval of 0.25τc. We used 500 needles in a cubic cell under
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the periodic boundary condition. The needles were placed at random positions with random
orientations in the cubic cell at the initial stage. The translational and angular velocities
of the needles were given randomly according to the Maxwell–Boltzmann distribution. No
equilibration procedure is needed because the infinitely thin hard needles have no correlations
in the static structure. Each molecular dynamics calculation was performed up to 1 × 106

collisions. Several calculations with 250 needles or 1500 needles showed no deviation from
the results of 500 needles within statistical error.

The self-diffusion coefficient can be divided into two components with respect to the
orientation of the needle at the initial stage, D‖ and D⊥, defined as [5]

D‖ =
∫ ∞

0
〈(�v(t) · �u(0))(�v(0) · �u(0))〉 dt (13)

D⊥ = 1

2

∫ ∞

0
〈�v(t) · (1 − �u(0)t �u(0))�v(0)〉 dt (14)

where �u(0)t �u(0) is the dyadic. The self-diffusion coefficient is equal to the weighted average
of D‖ and D⊥ as D = (D‖ + 2D⊥)/3. The decomposition of the self-diffusion coefficient into
the parallel (longitudinal) and the perpendicular (transverse) components is effective at high
densities where the reorientation of molecules is highly restricted [5]; the parallel component
of the hard-needle fluid increases at high densities with the increase in density, while the
perpendicular component decreases to zero. However, the decomposition is also effective to
elucidate the characteristics of the self-diffusion coefficient at low densities.

Integration of the velocity autocorrelation function was carried out numerically up to
the time at which the velocity autocorrelation function vanishes in the statistical error of the
molecular dynamics calculation for I � 0.01. The integral at I < 0.01 was evaluated by
assuming the exponential decay of the velocity autocorrelation function at large t/τc, because
the velocity autocorrelation function did not relax completely within the calculation time.

4.2. Trajectory calculation of the binary scattering

Necessary values in the ISA were evaluated by the trajectory calculation on the scattering of
a pair of hard needles. We used two kinds of initial conditions on the translational velocity of
the needles in evaluating 〈〈�v · � �P 〉〉 etc; (i) two needles A and B move along the same axis in
opposite directions and (ii) needle A running along an axis encounters the randomly moving
needle B. The two initial conditions give the same results for randomly aligned needles. We
can evaluate easily the effect of rotational anisotropy of needle A at the initial stage under
condition (ii), while extra calculation is required for the determination of the initial position
with the given impact parameter.

The procedures of the trajectory calculation under the above two initial conditions (i)
and (ii) are the same. We generated a pair of thermally rotating needles of the angular
velocities obeying the two-dimensional Maxwell–Boltzmann distribution. The pair of needles
were placed at the distance unity with an impact parameter and translational velocities given
according to the initial condition (i) or (ii), and then they ran on their trajectories according
to the equation of motion. Integration over the collisions was carried out numerically for
the translational velocity and the impact parameter; we used the constant interval 0.1 for
the translational velocity up to 8 and the interval 0.05 for the impact parameter up to 1. The
results were also reproduced by a fully Monte Carlo calculation for the generation of the
translational velocities and the impact parameters with 1 × 106 trajectories. The collision
frequency between randomly aligned needles evaluated by the trajectory calculation agreed
fairly well with the analytical result in equation (4).
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Figure 2. (a) Velocity autocorrelation functions Cv(t) of the hard-needle fluid for several moments
of inertia I = 0.01 (◦), 1/12 (�) and 1 (♦) at ρ = 0.01 with 500 needles. Grey and closed symbols
represent the results with 250 needles and 1500 needles, respectively. (b) Deviation of the velocity
autocorrelation function from the ISA.
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Figure 3. Self-diffusion coefficients of the hard-needle fluid obtained by the molecular dynamics
calculation with 500 needles at several densities ρ = 0.01 (◦), 0.1 (�) and 1 (♦). The dotted line
and the solid line represent the self-diffusion coefficient by the ICA and the ISA, respectively [4].

5. Results and discussion

5.1. Velocity autocorrelation function and the self-diffusion coefficient

Figure 2 shows the calculated velocity autocorrelation functions at ρ = 0.01. The velocity
autocorrelation function decreases almost exponentially and the relaxation time increases with
the decrease in the moment of inertia. Although the ISA gives the correct slope at t = 0, the
velocity autocorrelation function deviates from the value of the ISA by the correlation with
successive scatterings. The larger the moment of inertia, the larger the deviation.

Dependence of the self-diffusion coefficients on the moment of inertia of the hard needle
is shown in figure 3. We found no dependence on the number of needles in the molecular
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coefficient D = (D‖ + 2D⊥)/3 at ρ = 0.01.

dynamics calculation of the self-diffusion coefficient within the statistical error. The product
of the number density and the self-diffusion coefficient ρD increases with the increase in
density at large moment of inertia (I > 0.05), while ρD decreases at small moment of
inertia. The density dependence can be ascribed to the effect of the ternary scattering
that takes place before the binary scattering is completely finished: the mean time interval
between the scatterings is of the order of unity around ρ = 1, which is comparable with
the duration of the chattering collisions at small moment of inertia and the rotation of the
needle at large moment of inertia. The value of ρD at ρ = 0.01 was not very different from
the value at ρ = 0.1. The deviation in ρD at ρ = 0.01 from the limiting value at ρ → 0
will be negligibly small in comparison with the statistical error of the calculation, because the
effect of the ternary scattering is reduced in proportion to the density. We will use the value
of ρD at ρ = 0.01 as the limiting value at ρ → 0.

The ISA gives reasonable values for the self-diffusion coefficient at small moment of
inertia as in monatomic gases. However, the deviation of the ISA increases with increasing
moment of inertia as shown in figure 3. The ratio D/D(ISA) was almost saturated around
I = 1 at 1.12. The deviation in the ratio 0.12 is much larger than that of the gas composed of
hard spheres 0.02 [2], whereas the chattering collisions hardly occur at I > 1.

5.2. Effects of rotational anisotropy on the self-diffusion coefficient

The dependence of the parallel (longitudinal) D‖ and the perpendicular (transverse) D⊥
components of the self-diffusion coefficient on the moment of inertia is shown in figure 4.
The perpendicular component agrees well with the ISA over the whole range of moment of
inertia, while the deviation of the parallel component from the ISA increases with the increase
in the moment of inertia. The deviation of the self-diffusion coefficient comes mainly from
the parallel components. The difference in the parallel and the perpendicular components is
attributed to the rotational anisotropy with respect to the translational motion. The parallel
component D‖ reflects the contribution from the needles of the rotational axis perpendicular to
the translational velocity, whereas the needles that contribute to the perpendicular component
D⊥ have the rotational axis aligned isotropically to the translational velocity.
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The rotational anisotropy in the translational motion can be evaluated by the Legendre
polynomial of second order, h, as

h = P2

( �j · �v
|�v|

)
(15)

where �j is the unit vector along the angular momentum �ω/| �ω|. We will pay attention to two
extreme cases h = 1 and h = −0.5. When the angular momentum of the needle is parallel
to the translational motion (h = 1) like that of a propeller, the needle will collide with other
needles more frequently than for Frisbee-like motion (h = −0.5). The trajectory calculations
show that the total collision cross section σtotal of the propeller-like motion (h = 1) is larger
than the Frisbee-like motion (h = −0.5) with randomly aligned needles; σtotal = 0.160π for
h = 1 and 0.136π for h = −0.5 at I = 1/12.

The difference is more remarkable in the disturbance of the translational velocity 〈〈�v·� �P 〉〉
that is directly related to the self-diffusion coefficient; note that 〈〈�v · � �P 〉〉 with a fixed initial
configuration cannot be simply expressed by 〈〈(� �P)2〉〉 as in equation (10). The ratio of
〈〈�v ·� �P 〉〉 with a fixed h at the initial stage to that of the randomly aligned needle 〈〈�v ·� �P 〉〉th

is shown in figure 5. The propeller-like motion (h = 1) feels a larger disturbance than the
Frisbee-like motion (h = −0.5). The difference between two initial configurations decreases
with the decrease in the moment of inertia. The contribution from the initial collision in the
scattering is also depicted in figure 5. The chattering collisions increase the disturbance of
the translational velocity and play an important role in reducing the difference by the initial
rotational anisotropy at small moment of inertia. However the effect of rotational anisotropy
on the self-diffusion coefficient is not large at small moment of inertia, because the relaxation
time of the rotational axis decreases with the decrease in the moment of inertia.

The correlation of the rotational axis before and after the scattering 〈 �j in · �j scat〉 is shown in
figure 6. Rotational anisotropy is lost largely at small moment of inertia in a single scattering.
The relaxation of the rotational anisotropy is accelerated further by the increase in the scattering
cross section at small moment of inertia [4]; σtotal is 0.125π (I = 1) and 0.320π (I = 0.001)

for randomly rotating needles. Rapid relaxation of the rotational anisotropy at a small moment



Effects of rotational anisotropy on the self-diffusion 4895

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1

h = 1
h = -0.5
random

<
j in

 j sc
at

>

I

Figure 6. Correlation of the rotational axis of the needle �j = �ω/| �ω| of the incident needle �j in with
the scattered needle �j scat. Rotational anisotropy of the needle is h = 1 (◦) and h = −0.5 (�).
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of inertia can be deduced from the expression of the impulse at a collision instant in equation (2);
the change in the angular velocity will be proportional to I−1/2 at a small moment of inertia
as shown in equation (3), because the impulse is proportional to I 1/2. Rapid relaxation of
the rotational anisotropy at small moment of inertia is also apparent in the expression for
the relaxation time of the autocorrelation function of the angular momentum, τω, by the ICA
[5] as

1/τω = 4
√

πρI
{

2
3F3/2(8I ) − 2F1/2(8I )

}
. (16)

When the moment of inertia decreases, the relaxation time τω will decrease in proportion
to I 1/2 at I → 0, though the relaxation time of the velocity autocorrelation τv diverges in
proportion to I−1/2 by the ICA.

A simple two-state model can demonstrate the mechanism of the acceleration of the
self-diffusion in the hard-needle gas due to the correlation of rotational anisotropy. Suppose
a molecule can have two conformations X and Y. The velocity autocorrelation functions of
X and Y are relaxed by different rate constants kX

v and kY
v , which are the reciprocal of the

relaxation time τv in equation (8). At the same time, these two conformations can interchange
with the rate constants kXY and kYX as

X −→ Y, kXY (17)

Y −→ X, kYX. (18)

If the interchange process is assumed to be independent of the relaxation of the velocity
autocorrelation function, we will have two rate constants for the whole relaxation scheme as

k = p+ + q+ ±
√

q2
+ + p2− + 2p−q− (19)

where

p+ = (
kX
v + kY

v

)/
2, p− = (

kX
v − kY

v

)/
2,

q+ = (kXY + kYX)/2, q− = (kXY − kYX)/2.
(20)
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When the interchange rates between X and Y are the same (q− = 0) and they are much faster
than the relaxation rates (q+ � p+), the slower relaxation rate constant ks in equation (19) is
given as

ks = p+ − p2
−

2q+
. (21)

The faster relaxation process with the rate constant, 2q+, will not play an important role
in the whole relaxation process. The resulting relaxation time (1/ks) corresponds to the
self-diffusion coefficient of the whole system.

In the context of the two-state picture, the ISA corresponds to the approximation in which
the interchange rate constant 2q+ is assumed to be infinitely large; the self-diffusion coefficient
by the ISA is equal to the harmonic mean of the self-diffusion coefficients of two conformers
X and Y (1/p+). The ISA becomes a good approximation with decreasing correlation of the
rotational anisotropy between scatterings by the increase in the interchange rate.

6. Conclusion

The self-diffusion coefficient of a dilute fluid composed of infinitely thin hard needles increases
with the decrease in the moment of inertia of the needle. The ICA gives a simple picture of
the change of the self-diffusion coefficient by the impulse and the cross section of a single
molecular collision [4]. However, the ICA shows sizable deviation due to correlations between
the collisions.

The internal degrees of freedom of the hard needle bring about two kinds of correlations
between the collisions; one is the chattering collisions, that is the correlation in a single
scattering, and the other is due to the rotational anisotropy in the translational motion between
scatterings. The effect of the chattering collisions is important, when the needles rotate quickly
and fickly at small moment of inertia. Although the ICA does not hold at small moment of
inertia, the ISA works well because the correlation among the chattering collisions is taken
into account in the ISA. The effect of rotational anisotropy is evident, when the relaxation of
the molecular axis is slow at large moment of inertia. The ISA (or the ICA) underestimates the
self-diffusion coefficient by more than 10% at I > 1, which is much larger than the deviation
found for monatomic gases. A simple two-state picture is useful to describe the origin of the
deviation of the self-diffusion coefficient due to the correlation in the rotational anisotropy.

It is well known that the internal degrees of freedom of the molecules lead to the bulk
viscosity that is not found in monatomic gases [2, 3]. The correlation by the internal degrees
of freedom can bring about large deviation of a usual transport coefficient from the ISA
(or the ICA) also. We should be cautious about evaluating the deviation for the transport
properties of molecular gases from the ISA that is identical to the first approximation in the
Chapman–Enskog expansion.
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